
MAPS-TCT:
MPSoC Application Parallelization and 
Architecture Exploration Framework

Tsuyoshi ISSHIKI

isshiki@vlsi.ss.titech.ac.jp
Dept. of Communications and Integrated Systems,

Tokyo Institute of Technology

June 26th, 2008

June 26th, 2008 Tokyo Institute of Technology 2

Outline

• Introduction: MPSoC design challenges
• MAPS-TCT Framework Overview
• Tightly-Coupled Thread (TCT) Model

– TCT programming model and execution model
– TCT compiler and tools
– TCT-MPSoC Hardware Platform

• MAPS: MPSoC Application Programming Studio
– Program analysis
– Partitioning

• Summary and Ongoing Developments



June 26th, 2008 Tokyo Institute of Technology 3

MPSoC Design Challenges

uP
uP

uP

HW

HWHW
actuator

speaker

display

actuatoractuator

LANwireless

sensorsensorsensor

microphone

camera

touch panel

Vast amount of silicon resource
Heterogeneous multiprocessors
Customized HW cores

Optimized system-level partitioning 
Optimized MPSoC RTOS
Guaranteed QoS/deadline time
System-level power management

displaydisplay

• Huge design complexity (SW/HW)
• Highly-parallel heterogeneous system architecture
• Complex system environment (#external devices, concurrency)
• Fully optimized at system-level

– SW: algorithms, parallelization, coding
– HW: CPU-cores, dedicated hardware IPs, inteconnect

Huge # of 
external devices

wirelesswireless

High speed 
interconnect

Highly concurrent 
environment

June 26th, 2008 Tokyo Institute of Technology 4

Application Design Issues

• Application design
– Algorithm: definition of system functionality
– Parallelization (CPUs, HW blocks)

• Concurrency extraction (task partitioning)
• Communication/synchronization insertion

• Existing approaches
– Algorithm designs on concurrent execution model

• “Model of Computation” : Kahn Process Network, Dataflow 
Process Network, Synchronous Dataflow Graph, etc.

• Parallel programming languages and APIs
time-consuming, error-prone, hard to debug

– Parallelization compilers
• Focused mainly on scientific applications (HPC)
• Hard to optimize for heterogeneous MPSoCs



June 26th, 2008 Tokyo Institute of Technology 5

MAPS-TCT Framework Overview

• Algorithm design on C programs
– Used by almost everyone 
– Rich tool environment
– Vast amount of legacy codes and reference codes

Algorithm debugging and tuning on C: most efficient
• Tool support for concurrency extraction (MAPS@RWTH Aachen)

– Powerful analysis and code partitioning engines
– Fully driven by programmer’s intervention
– Rich feedback to guide programmer’s decision

Allows efficient design space exploration for optimal system modeling
• Parallel execution code generator (TCT@Tokyo Tech)

– Input: “threaded C” (from MAPS or manual editing)
– Automatic communication insertion: message-passing instructions
– Allows parallelism on any granularity (statements, loops, functions)
– Guarantees identical behavior with original sequential C

Frees programmer from dealing with communication details
Wide variety of parallelisms: task-level, functional pipeline, fine-grain

June 26th, 2008 Tokyo Institute of Technology 6

MAPS-TCT Framework
MAPS@RWTH Aachen

TCT@Tokyo Tech



June 26th, 2008 Tokyo Institute of Technology 7

Tightly-Coupled Thread (TCT) Model

• TCT model is a new framework which generates 
a concurrent execution model of “tightly-coupled 
threads” for functional blocks in MPSoCs.
– TCT programming model : seamless transition from 

sequential C codes
– TCT concurrent execution model : functional pipelining, 

task parallelisms
– TCT compiler : automatic insertion of communication 

and synchronization instructions for message passing
– TCT MPSoC Platform : execution platform for TCT model

• Processing elements with dedicated communication module
• Full crossbar interconnect for high bandwidth 

communication
• Verified on actual silicon (0.18um process)

June 26th, 2008 Tokyo Institute of Technology 8

TCT Programming Model
void JPEGtop(){

for(i = 0; i < imageSizeYPadding;){
for(ii = 0; ii < 8; ii ++){

ReadOneLine(fp, i ++); // row 0: RGB => Y0/Y1,Cb0,Cr0
ReadOneLine(fp, i ++); // row 1: RGB => Y0/Y1,Cb0,Cr0
THREAD(Dsamp){ DownsampleCbCr(i);} // Cb0,Cr0 => Cb,Cr

}
THREAD(BLKcore){ // call the core functions

int nR = (i - 8 >= imageSizeY); // 2nd row is dummy
for(j = 0; j < imageSizeX; j += 16){

int nC = (j + 8 >= imageSizeX); // 2nd col is dummy
THREAD(Y0){ // process Y components

BLK8x8(&Y0[j],0,&DCy,&state,0);
BLK8x8(&Y0[j+8],0,&DCy,&state,nC);

}
THREAD(Y1){ // process Y components

BLK8x8(&Y1[j],0,&DCy,&state,nR);
BLK8x8(&Y1[j+8],0,&DCy,&state,nC+nR);

}
THREAD(C){ // process Cb/Cr components

BLK8x8(&Cb[j>>1],1,&DCcb,&state,0);
BLK8x8(&Cr[j>>1],1,&DCcr,&state,0);

}
} }

}}

thread
scopes

void ReadOneLine(...){
THREAD(cY){ ... }
THREAD(cCb){ ... }
THREAD(cCr){ ... }
THREAD(BUF){ ... }

}

• Simply insert “thread 
scope” directly on the 
sequential C code

• No need to specify 
concurrent semantics

• Preserves original 
sequential structure

void BLK8x8(...){
...
THREAD(Q){ ... }
THREAD(E){

...
THREAD(W){ ... }

}
}



June 26th, 2008 Tokyo Institute of Technology 9

Application Slicing Structure

• Global thread slicing tree
– Thread nesting structure of the entire application
– Thread duplication through function calls from 

threads

Dsamp BLKcore

root

duplicated threads

Y0

Q0 E0 W0

Y1

Q1 E1 W1

C

Q2 E2 W2

cY cCb cCr BUF

June 26th, 2008 Tokyo Institute of Technology 10

TCT Concurrent Execution Model

• Hierarchical pipeline structure
– Layers of pipeline structures operating in parallel

Combination of functional pipelining and task parallelism
with complex data flow

Control flow graph

root

root

root
START

END

L0

B0

L0

C0

L1

L2

B1

B2

L1

C1

DsampDsampCbCr(…)

B3

B4

ReadOneLine(…)

ReadOneLine(…)

JPEGtop

L1

L0

Y0

Y1

Y1

C

C

BLKcore

Y0BLK8x8(…)

L2

C2

B5

B7

BLK8x8(…)

BLK8x8(…)

BLK8x8(…)

BLK8x8(…)

BLK8x8(…)

L2

B6

T F

T F

T F

Functional pipelines and task parallelism 
exploited in the TCT model.

ReadOneLine
BLK8x8

x2

x2 x2 x2

L2:BLKcoreL1:root

cY cCb cCr

BUF

Dsamp

C

Q2

E2

W2

Y0

Q0

E0

W0

Y1

Q1

E1

W1

L1
BLK8x8 BLK8x8

L0



June 26th, 2008 Tokyo Institute of Technology 11

Hierarchical Pipelining
L1

L2
L1

L2
L1 L1

L2

cY
cCb
cCr

BUF

cY
cCb
cCr

BUF

cY
cCb
cCr

BUF

cY
cCb
cCr

BUF

cY
cCb
cCr

BUF

cY
cCb
cCr

BUF
Dsamp Dsamp Dsamp

cY
cCb
cCr

BUF

cY
cCb
cCr

ReadOneLine
BLK8x8

x2

x2 x2 x2

L2:BLKcoreL1:root

cY cCb cCr

BUF

Dsamp

C

Q2

E2

W2

Y0

Q0

E0

W0

Y1

Q1

E1

W1

L1
BLK8x8 BLK8x8

L0

L1

L2

Y0
Q0

E0
W0

Y1
Q1

E1
W1

C
Q2

E2
W2

L0

Layers of pipelines with:
• Different throughputs 

(may be variable)
• Different iteration count 

(may be variable)
• Data dependences 

between pipelines

June 26th, 2008 Tokyo Institute of Technology 12

ReadOneLine
BLK8x8

x2

x2 x2 x2

L2:BLKcoreL1:root

cY cCb cCr

BUF

Dsamp

C

Q2

E2

W2

Y0

Q0

E0

W0

Y1

Q1

E1

W1

L1
BLK8x8 BLK8x8

L0

Hierarchical Pipelining in Action …

• 19 threads
• 9.43 speedup 

(49.6% parallel efficiency)

TCT parallel execution schedule viewer

ti
m

e



June 26th, 2008 Tokyo Institute of Technology 13

TCT Communication Model
• Thread allocation: statically allocated to each processor

– Currently assumes: 1 thread per 1 PE
• Distributed memory model: no remote memory access
• Thread communication: message passing via buffered channel
• Fully distributed control: no global scheduler and dispatchers 
• Communication instructions:

– CT (control token): activation of child thread
– DT (data transfer): send modified data to other threads
– DS (data synchronization): check readiness of received data

CM : communication module
LM : local memory
PE : processor element

CM

LM PE

interconnect

thread A thread B thread C

CM

LM PE

CM

LM PE

June 26th, 2008 Tokyo Institute of Technology 14

Data Buffering Model

• Buffer structure 
– Each data entity managed in separate (logical) FIFO

• Arrays and data structures handled as single data entity
• Burst transfer on arrays and data structures

– First-Out data entities accessible from the processor
• FIFO space allocated inside local data memory
• Fully configurable : # of data entities, data sizes

char a

int b[10]

int c

First-Out data

PE

Allocated in Data Memory



June 26th, 2008 Tokyo Institute of Technology 15

TCT Compiler

• C front-end + “thread-scope” parsing
• Interprocedural data dependence analysis

– Interprocedural Dependence Flow Graph (IDFG)
• Extension of static single-assignment (SSA) form which 

integrates data-flow and control-flow representations
• Captures all function call side effects through globals and 

pointer dereferences
• Flow-insensitive context-sensitive pointer analysis

• Communication code insertion
– Extraction of interprocedural dependences on thread 

boundaries (possibly across layers of function calls)
– Insertion of communication instructions (CT, DT, DS)
– Buffer management codes

June 26th, 2008 Tokyo Institute of Technology 16

TCT Tools
• TCT Compiler

– C parser + dependence analyzer + 
communication generator

– Output: 
• parallel object codes : TCT processor
• parallel C codes with communication 

API calls currently translates to MPI
• TCT Simulators 

– “3-address code” IR simulator
• Verify functional/comm. behavior

– Instruction-set simulator
• Incl. cycle-accurate comm. simulator

– Trace simulator
• Parameterized MPSoC simulator for 

architecture exploration
• Application visualizer tools

– Call graph, program graph, 
dependence flow graph, etc.

– Parallel execution schedule viewer

Dependence flow graph



June 26th, 2008 Tokyo Institute of Technology 17

Inserted TCT Communication Codes

Data Synchronization

Data Synchronization

June 26th, 2008 Tokyo Institute of Technology 18

TCT-MPSoC Prototype Chip
• TCT Coprocessor (TCoP): 6-PE array @ 100 MHz

– Full crossbar interconnect
– Dedicated comm. module in each PE

• Host RISC core: @ 200 MHz 
– Can be configured as the 7th PE on the PE array interconnect 

TCT-MPSoC

TCT Co-Processor

Host
Interface

LCD
Ctrl

RISC
uP

DMA
Ctrl

Mem
Ctrl

AHB
Arbiter

APB
Bridge

UART SPI GPIO
PE PE PE PE

PE PE

Interconnect

Interrupt
Ctrl

AHB Bus

APB Bus



June 26th, 2008 Tokyo Institute of Technology 19

TCT Communication Protocol

CPU
Data

Memory

Comm.

Transmitter

CMLUT
CMLUT

DT

Ctrl : REQ
ReqData

Dest. Vect.

CPU
Data

Memory

Comm.

Receiver

CMLUT
CMLUT

destPortID

Read Addr
Data Size

Write Addr
Data Size

1. Decode DT Instr. 

2. Send REQ 1. Detect REQ
2. Check BUF status

3. If (BUF-FULL) send NACK & exit

3. Setup DMEM READ addr

4. Setup DMEM WRITE addr

5. Send ACK, wait for TRANS4. Detect ACK

5. Send TRANS + data 6. Detect TRANS, store data

S
e
tu

p

R
e
sp

o
n

seT
ra

n
sm

it

DT srcPortID dstID dstPortID

Setup phase:
2 – 6 cycles 
(4 cycles typ.)

DT instr.

4 bytes/cycle

… waiting for ACK ..

Comm. LUT (CMLUT) 
stores address and 
size info of each data 
transfer

4-stage RISC
(original ISS)

June 26th, 2008 Tokyo Institute of Technology 20

TCoP Interconnect Architecture

PE0 PE1 PE2 PE3 PE4 PE5 R-IF

Data : 32 bit
Destination vector : 7 bit 
Control : 2 bit (TX) + 2 bit (RX) 

7:1 MUX

• Full cross bar interconnect network
• Autonomous decentralized arbitration
• Fast and area efficient (2 ns delay, 1K gates/PE)
• Priority bit for simultaneous requests



June 26th, 2008 Tokyo Institute of Technology 21

TCT-MPSoC Chip Implementation
(TSMC 0.18um/6M) 

5000um

RISC

PLL

4080um

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

RA
M

4KB

TCT
Co-

Processor

AHB
+

APB

302,685

257,084

6,996

12,619

37,707

Gate count 
(est.)

3,934,900
SRAM 14x4KB 
(56KB)

3,342,090TCoP (Total)

90,954Interconnect

164,048Comm. module

490,195
PE (incl. comm. 
module)

Area 
（um2）

Module

June 26th, 2008 Tokyo Institute of Technology 22

MAPS-TCT Framework
MAPS@RWTH Aachen

TCT@Tokyo Tech



June 26th, 2008 Tokyo Institute of Technology 23

MAPS: MPSoC Application 
Programming Studio

• A practical MPSoC software development tool 
suite
– Sequential C (input) “threaded C” (output)
– Powerful analysis tools for providing rich feedback to the 

programmers
• Static dependence analysis
• Dynamic profiling

– Powerful clustering method for extracting coarse-grain 
parallelism

• Weighted Statement Control Data Flow Graph (WSCDFG):
annotates dynamic profiling information on CDFG

• Coupled Block (CB): subgraph of WSCDFG that is 
schedulable and tightly coupled by data dependence

• Constrained Agglomerative Hierachical Clustering (CAHC):
iterative clustering for building coarser graphs

June 26th, 2008 Tokyo Institute of Technology 24

Weighted Statement 
Control Data Flow Graph (WSCDFG)

• Definition: WSCDFG is a directed graph defined by 
G = (V,CE,DE,CW,DW,N) :
– V: IR statement nodes
– CE: set of control flow edges
– DE: set of data flow edges
– CW: weights (count) of control edges
– DW: weights (amount of data, e.g. bytes) of data edges
– N: weight of IR statement nodes (execution cost)



June 26th, 2008 Tokyo Institute of Technology 25

Coupled Block (CB)

• CBs are sub-graphs in a WSCDFG which 
fulfills:
– Schedulability: single-entry single-exit (SESE)
– Tightly coupled by data-dependence: defined 

by cost function with tunable parameters
A flexible granularity concept driven by cost 

function as opposed to fixed granularity (i.e. 
IR-statements, BBs, functions)

• Optimal generation of CB
Clustering heuristic for CB generation: CAHC

June 26th, 2008 Tokyo Institute of Technology 26

Constrained Agglomerative 
Hierarchical Clustering (CAHC)

• Based on density-based data clustering algorithm 
(DBSCAN) :
– Constrained: comply strictly to CB definitions
– Hierarchical: several clustering levels with different 

granularities
– Agglomerative: build coarser graphs iteratively



June 26th, 2008 Tokyo Institute of Technology 27

JPEG Encoder Case Study (1)

• Analysis result:
– Functions chosen for task generation: JPEGtop (99%), 

BLK8x8(57%), ReadOneLine(38%)

June 26th, 2008 Tokyo Institute of Technology 28

JPEG Encoder Case Study (2)

42ReadOneLine

23BLK8x8

51JPEGtop

No. TasksNo. IterationsFunction

• Partitioning result:



June 26th, 2008 Tokyo Institute of Technology 29

JPEG Encoder Case Study (3)

49.6%199.43xmanual

34.3%165.48x3

32.3%175.48x2

22.58%163.61x1

Parallel EfficiencyNo. of PEsSpeedupStep

222BLK8x8

344ReadOneLine

665JPEGtop

Step 3Step 2Step 1

No. Tasks
Function

• Speedup & efficiency

• # tasks in each step

June 26th, 2008 Tokyo Institute of Technology 30

Summary

• MAPS-TCT Framework
– Collaboration between RWTH Aachen (ISS) and Tokyo 

Tech.
– MPSoC software development framework

• MAPS: MPSoC Application Programming Studio
– Input: sequential C output: “threaded C”
– Analysis tools (static analysis, dynamic profiling)
– Clustering tool for extracting coarse-grain parallelism

• Tightly-Coupled Thread (TCT) Model
– Input: “threaded C”
– Automatic communication insertion
– Allows parallelism on any granularity
– Guarantees identical behavior with original sequential C



June 26th, 2008 Tokyo Institute of Technology 31

Ongoing Developments
• MAPS

– Improvements on partitioning algorithm
– Heterogeneous platform support
– Spatial/temporal mapping exploration
– Multi-application input model: various real-time 

characteristics, potential concurrencies among 
applications

• TCT
– TCT-MPSoC Virtual Platform for heterogenous

architecture exploration
– HW/SW synthesis: behav. synthesis on some threads for 

dedicated HW generation
– Multi-tasking: multiple threads per processor
– Extension of TCT comm. protocol for shared memory 

support

June 26th, 2008 Tokyo Institute of Technology 32

Contacts

• MAPS@RWTH Aachen (ISS)
– Rainer Leupers (leupers@iss.rwth-aachen.de)

• TCT@Tokyo Institute of Technology
– Tsuyoshi Isshiki (isshiki@vlsi.ss.titech.ac.jp)


